Shape Optimization for Quadratic Functionals and States with Random Right-Hand Sides

نویسندگان

  • Marc Dambrine
  • Charles Dapogny
  • Helmut Harbrecht
چکیده

In this work, we investigate a particular class of shape optimization problems under uncertainties on the input parameters. More precisely, we are interested in the minimization of the expectation of a quadratic objective in a situation where the state function depends linearly on a random input parameter. This framework covers important objectives such as tracking-type functionals for elliptic second order partial differential equations and the compliance in linear elasticity. We show that the robust objective and its gradient are completely and explicitly determined by low-order moments of the random input. We then derive a cheap, deterministic algorithm to minimize this objective and present model cases in structural optimization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach for Solving Interval Quadratic Programming Problem

This paper discusses an Interval Quadratic Programming (IQP) problem, where the constraints coefficients and the right-hand sides are represented by interval data. First, the focus is on a common method for solving Interval Linear Programming problem. Then the idea is extended to the IQP problem. Based on this method each IQP problem is reduced to two classical Quadratic Programming (QP) proble...

متن کامل

New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs

In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...

متن کامل

Interactive multiple objective programming in optimization of the fully fuzzy quadratic programming problems

In this paper, a quadratic programming (FFQP) problem is considered in which all of the cost coefficients, constraints coefficients, and right hand side of the constraints are characterized by L-R fuzzy numbers. Through this paper, the concept of α- level of fuzzy numbers for the objective function, and the order relations on the fuzzy numbers for the constraints are considered.  To optimize th...

متن کامل

A Gaussian upper bound for Gaussian multi-stage stochastic linear programs

This paper deals with two-stage and multi-stage stochastic programs in which the right-hand sides of the constraints are Gaussian random variables. Such problems are of interest since the use of Gaussian estimators of random variables is widespread. We introduce algorithms to nd upper bounds on the optimal value of two-stage and multi-stage stochastic (minimization) programs with Gaussian right...

متن کامل

An Effective Method for Parameter Estimation with PDE Constraints with Multiple Right-Hand Sides

Many parameter estimation problems involve with a parameter-dependent PDEs with multiple right hand sides. The computational cost and memory requirements of such problems increases linearly with the number of right hand sides. For many applications this is the main bottleneck of the computation. In this paper we show that problems with multiple right hand sides can be reformulated as stochastic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2015